Информационный сайт ru-mo
ru-mo
Меню сайта

  • Категории каталога
    Планета и царства природы [58]
    Эволюция жизни [20]

    Форма входа

    Поиск

    Друзья сайта


    Приветствую Вас, Гость · RSS 23.10.2017, 09:19

    Главная » Статьи » Среда обитания » Планета и царства природы

    Развитие жизни на Земле (продолжение)
    Развитие жизни на Земле
    3.1.3.Образование и эволюция биополимеров.

    Какова же дальнейшая судьба образовавшихся органических соединений? Часть из них разрушилась под действием тех же видов энергии, что необходимы были при их синтезе. Такие летучие соединения, как формальдегид и цианистый водород, ушли в атмосферу и лишь частично растворились в водоемах. Жирные кислоты, соединившись со спиртами, могли образовывать липидные пленки на поверхности водоемов, в которых были растворены азотистые основания, сахара и аминокислоты. Необходимо представлять, что в различных частях нашей планеты были различные условия и источники энергии. Поэтому и состав органических веществ, и их концентрация в разных первобытных водоемах были различны. Скорее всего дальнейшая химическая эволюция органических соединений, приводящая к их усложнению и образованию полимерных молекул, проходила при редчайшем сочетании «счастливых» обстоятельств.

    Если при изучении первой стадии биопоэза к нашим услугам были результаты многочисленных экспериментов, то анализ второй стадии максимально затруднен из-за минимальной возможности экспериментировать. В попытках создать правдоподобную картину образования и эволюции биополимеров мы можем рассчитывать лишь на логику.

    Американский ученый С. Фокс в 1957 г. высказал идею о том, что аминокислоты могут соединяться, образуя пептидные связи в отсутствие воды, т.е. благодаря дегидратационному синтезу. Он нагревал сухую смесь аминокислот и после охлаждения и растворения в воде обнаружил белковоподобные молекулы со случайной последовательностью аминокислот. Фокс предполагает, что на древней Земле аминокислоты концентрировались в испаряющихся водоемах, а затем полимеризовались под действием тепла лавовых потоков или в ходе высушивания под действием солнечных лучей. Последующие дожди растворяли полипептиды. Возможно, синтез полимеров катализировался на поверхности минеральных глин. Экспериментально показано, что раствор аминокислоты аланина в водной среде в присутствии особого вида глинозема и АТФ может давать полимерные цепочки полиаланина.

    Таким образом можно представить, что на древней Земле могли образовываться полипептиды, некоторые из которых могли обладать каталитической активностью. Однако абиотическое образование каталитически активных полимеров аминокислот может не иметь прямого отношения к происхождению жизни, так как полипептиды не обладают способностью самовоспроизводиться и закреплять тем самым приобретенную в результате химической эволюции структуру, способную выполнять определенные функции.

    3.1.4.Роль РНК и ДНК в образовании систем с обратной связью.

    Нуклеиновые кислоты в отличие от белков способны к репликации, т.е. созданию новых копий, не отличимых от материнских молекул. Открытие Т. Чеком в 1982 г. каталитической активности РНК позволяет предположить, что молекулы РНК были первыми биополимерами на Земле. Кроме того, были проведены эксперименты, показывающие, что в среде, содержащей в высокой концентрации минеральные соли и рибонуклеиды, спонтанно синтезируются олигорибонуклеотиды. Также спонтанно, путем спаривания комплементарных оснований, могут образовываться РНК-копии. Обе эти реакции протекают без участия ферментов или других белков.
    Пока непонятно, как древнейшая РНК стала кодировать аминокислотную последовательность. Трудно представить, что полезная кодирующая информация заключалась в длинной непрерывной последовательности оснований в спонтанно образующейся цепи РНК. Скорее короткие цепочки РНК, кодирующие пептидные цепочки, способные к каким-либо полезным функциям, были разделены не содержащими кодирующую информацию последовательностями, называемыми сегодня интронами. Не исключено, что сплайсинг РНК, который может протекать автокаталитически, в отсутствие белков-ферментов, возник как средство объединения экзонов, которые вместе могли кодировать крупный белок, функционально более эффективный, чем отдельные пептиды.

    Как могла возникнуть ДНК, лучше, чем РНК, приспособленная для долговременного хранения информации? Отсутствие гидроксидной группы в 2'-положении дезоксирибозы делает положение ДНК устойчивыми, в отличие от РНК, к гидролитическому расщеплению в слабощелочных водных растворах. А именно такие растворы были в первичных водоемах и сохранились в современных клетках. Кроме того, наличие двух комплементарных цепей облегчает процесс репликации и исправления ошибок, возникающих в любой из двух цепочек ДНК. Возможно, что благодаря активности древнего белка, близкого современному ферменту – обратной транскриптазе (т.е. способного синтезировать ДНК, используя в качестве матрицы РНК), и образовались первые молекулы ДНК на Земле.

    Наличие кодирующих белки молекул ДНК и РНК и белков-ферментов, катализирующих процессы репликации нуклеиновых кислот, позволяет образовываться системам с обратной связью. В таких системах нуклеиновые кислоты несут информацию и тем самым программируют увеличение количества тех белков, которые способствуют увеличению количества кодирующих их нуклеиновых кислот. Кроме того, белки могут защищать молекулы ДНК от разрушительного действия ультрафиолета. Системы такого вида уже обладают некоторыми признаками жизни, однако еще не могут быть названы живыми организмами, так как не имеют биологической мембраны.

    3.2.Формирование мембранных структур и эволюция пробионтов.

    3.2.1.Образование и эволюция биологических мембран.

    Лишь определенное взаиморасположение в пространстве позволяет таким важнейшим биополимерам, как белки и нуклеиновые кислоты, взаимодействовать и образовывать системы, приводящие к появлению первых живых организмов. Это становится возможным благодаря формированию биологических мембран, которые не только сохраняют случайно возникшие ассоциаты белков и нуклеиновых кислот, но и обеспечивают образовавшиеся системы с обратной связью веществами и энергией из окружающей среды.
    Как могли сформироваться мембраны на ранних этапах возникновения жизни? Поверхности водоемов были покрыты липидными пленками. Длинные неполярные углеводородные «хвосты» липидных молекул торчали наружу, а заряженные «головки» были обращены в воду. Растворенные в водоемах белковые молекулы могли адсорбироваться на поверхности липидной пленки благодаря электрическому притяжению к заряженным головкам. Образовывались двойные липопротеидные пленки. При порывах ветра поверхностная пленка изгибалась, от нее могли отрываться пузырьки. Из многочисленных пузырьков нашего внимания заслуживают лишь те, которые содержали белково-нуклеиновые системы с обратной связью. Такие пузырьки поднимались ветром в воздух, а когда падали на поверхность водоема, то покрывались вторым липидно-белковым слоем. Это происходило за счет гидрофобных взаимодействий между обращенными друг к другу неполярными «хвостами» липидов. Такая четырехслойная оболочка (два слоя белков по краям и два слоя липидов внутри) удивительным образом напоминают нам сегодняшнюю биологическую мембрану и могла быть ее прародительницей.

    Изложенный выше сценарий возникновения мембран представляется вполне правдоподобным, хотя и не единственно возможным. В течение миллионов лет структура первичной мембраны все более усложнялась как вследствие включения в свой состав новых разнообразных белковых молекул, способных погружаться в липидный слой и даже пронзать его, так и благодаря выпячиванию отдельных участков наружу и внутрь. В результате таких выпячиваний различные полимеры, плававшие в «первичном бульоне» и находившиеся вне пузырька, могли оказаться внутри его складок, где создавались условия для новых, ранее не существовавших взаимодействий. Эволюционно закреплялись лишь такие системы, которые были способны к саморегуляции и самовоспроизведению. Это и были первые живые организмы – пробионты.

    3.2.2.Способы питания первых организмов.

    Сегодняшние знания о составе атмосферы древней Земли позволяют заключить, что первые организмы были анаэробными гетеротрофами. Они размножались, получали пищу и энергию из органических и минеральных веществ абиогенного происхождения, в изобилии имевшихся в окружающей среде. Способом обмена веществ им служило брожение – процесс ферментативного превращения органических веществ, в котором акцепторами электронов служат другие органические вещества. При этом выделяется энергия, запасаемая в молекулах АТФ. Примером такого древнего способа обмена веществ, дошедшего до наших дней, является гликолиз – ферментативный путь бескислородного расщепления сахаров.
    В то время как одни бактерии основывались на гликолизе, другие выработали способность фиксировать атмосферный углекислый газ с образованием различных органических соединений, а третьи научились фиксировать атмосферный азот. В фиксации N2 участвует система ферментов нитрогеназ, специфически реагирующих с ацетиленом – богатым энергией соединением, который в больших количествах образовался из цианистого водорода еще до возникновения жизни.

    Следует помнить, что химическая эволюция и эволюция пробионтов длилась 1000–1500 млн. лет. За это время условия на Земле существенно изменились и запасы органических молекул, образованных на первой стадии биопоэза, постепенно истощались. По мере истощения запаса абиогенного органического материала возникла жесткая конкурентная борьба за него, что ускорило процесс эволюции первичных гетеротрофов.

    Исключительным событием стало возникновение бактериального фотосинтеза. Он освободил жизнь от зависимости от органических соединений абиогенного происхождения. Скорее всего фотосинтез возник у анаэробных бактерий, способных к азотфиксации. При этом источником энергии являлось Солнце, а результатом было накопление органических веществ биогенного происхождения. Первые фотосинтезирующие бактерии получали водород путем расщепления органики или сероводорода. Такой фотосинтез называется аноксигенным (бескислородным). Лишь потом цианобактерии (цианофиты, сине-зеленые) освоили фоторасщепление воды. Побочным продуктом такого фотосинтеза является кислород. Его накопление привело не только к коренному изменению хода эволюции, но и к преобразованию лика планеты.

    Появление озонового экрана защитило первичные организмы от смертельного ультрафиолетового облучения и положило конец абиогенному синтезу органических веществ. Теперь жизнь одних организмов зависела только от деятельности других живых организмов. Сегодня большинство представителей растительного и животного царства – облигатные (обязательные) аэробы; они погибают, если концентрация O
    2 в окружающей среде падает ниже той, к которой они приспособлены. Исключения составляют некоторые глубоководные сообщества и ряд кишечных паразитов (глистов), получающих энергию от реакции брожения. Для них кислород ядовит. Многие роды прокариот состоят исключительно из анаэробов, другие включают как анаэробные, так и аэробные виды.

    Первые аэробные бактерии появились благодаря приобретению аппарата окислительного фосфорилирования. Продукты брожения подвергались дальнейшему окислению до CO2
    и H2O. Эти аэробные гетеротрофы могли более эффективно, чем анаэробные бактерии, расщеплять органические вещества, образующиеся в результате фотосинтеза. По-видимому, с ростом концентрации O2 в атмосфере усложнялась жизнь первичных анаэробных гетеротрофов. Некоторые из них вымерли. Другие нашли среду, лишенную кислорода, и продолжали в ней анаэробное существование. Примером таких организмов являются дошедшие до наших дней метан-образующие бактерии или серные бактерии, живущие в горячих подземных источниках.

    3.2.3.Симбиотическая теория образования эукариот.

    Некоторые гетеротрофы пошли по пути, приведшему к образованию эукариотических клеток. Часть из них вступила в симбиоз с аэробными бактериями, способными к окислительному фосфорилированию. Поглотив аэробные бактерии, первичные гетеротрофы не расщепили их на составляющие молекулы, а сохранили в качестве энергетических станций, называемых сегодня митохондриями. Такие симбионты дали начало царствам животных и грибов.
    Другая часть первичных гетеротрофов «заключила союз» не только с аэробными гетеротрофами, но и с первичными фотосинтетиками, сохранив последние в качестве хлоропластов. Такие симбионты дали начало царству растений.
    Зачем митохондриям и хлоропластам кольцевые молекулы ДНК, по длине и форме похожие на ДНК бактерий? Почему митохондрии и хлоропласты имеют собственный белоксинтезирующий аппарат, включающий рибосомы, по характеристикам более близкие к бактериальным рибосомам, чем к рибосомам эукариотической клетки? Дело в том, что и митохондрии, и хлоропласты в далеком прошлом – свободно живущие организмы. Они, вступив в симбиоз, отдали часть своих генов «центральному правительству», но сохранили автономное право размножаться не в то время, когда это делает клетка, и осуществлять свои специфические функции по древним программам, записанным на кольцевых ДНК и реализуемым при синтезе своих белков на собственных рибосомах. В пользу симбиотической теории происхождения эукариот говорит и внешнее сходство митохондрий и хлоропластов со свободноживущими бактериями.
    Строгих доказательств того, что последовательность событий, приведших к сегодняшним формам жизни, нет. Но есть примеры, свидетельствующие о возможности такой эволюционной последовательности. Один из видов амеб составляет исключение среди эукариот и не содержит митохондрий, вместо них он приютил аэробные бактерии и вступил с ними в симбиотические отношения. Некоторые растения содержат в своих клетках цианобактерии, сходные по размеру и способу укладки хлорофиллсодержащих мембран с хлоропластами.

    3.3.Эволюция одноклеточных.

    3.3.1.Эволюция прокариот.

    С момента возникновения жизни на Земле прошло около 4 млрд. лет. С тех пор активно действуют два важнейших фактора эволюционного процесса – естественный отбор и наследственная изменчивость. Скорость эволюционного процесса постепенно возрастала и сами факторы эволюции преобразовывались и пополнялись новыми. У пробионтов уже существовали главные атрибуты любого живого организма: ДНК и система ее репликации, транскрипция, трансляция, мембранные структуры, ферментативные системы расщепления и синтеза органических веществ, запасания и переноса энергии. Деление пробионтов могло осуществляться примерно так же, как это происходит у современных бактерий, путем сравнительно простого деления надвое.
    В настоящее время многие исследователи считают, что вскоре после возникновения жизни сформировались три надцарства (рис. 1): архебактерии, эубактерии (включая сине-зеленые) и эукариоты (грибы, растения, животные, простейшие). Архебактерий сближает с эукариотами не только экзон-интронная структура генов, но и некоторые другие признаки, присущие только им. Оболочки клеток у них, например, состоят из эфиров углеводородов (типа изопрена) – соединений, не встречающихся у других организмов. По-видимому, архебактерии сохранили значительное сходство с пробионтами. Они обитают в бескислородных слоях, концентрированных солевых растворах, горячих вулканических источниках.
    Второе надцарство – эубактерии, чрезвычайно широко представлено в биосфере. Это так же, как и архебактерии, безъядерные одноклеточные организмы, их геномы лишены экзон-интронной организации. Третья ветвь живого – эукариоты, они обладают оформленным ядром и оболочкой. Именно эта группа живых организмов дала колоссальное разнообразие многоклеточных и одноклеточных форм.
    Крупнейшим ароморфозом, оказавшим огромное по своим последствиям воздействие, стало возникновение фотосинтеза. Фотосинтез возникал у прокариотических организмов, вероятно, неоднократно. В настоящее время фотосинтетики – это не только сине-зеленые, но и другие представители эубактерий и архебактерий. Возникновение фотосинтезирующих прокариотических организмов удалено от нас на 3–3,2 млрд. лет. Все организмы в то время были анаэробными, т.е. были способны существовать в бескислородной атмосфере. В атмосфере началось накопление кислорода и углекислого газа. Примерно 2 млрд. лет назад сформировалась атмосфера, подобная современной, в ней уменьшилось количество метана, аммиака, появилась возможность для возникновения и интенсивной эволюции аэробных организмов. Переход к аэробному метаболизму был предпосылкой к возникновению окислительного фосфорилирования – чрезвычайно важного ароморфоза. Эффективность извлечения энергии из углеводов при этом возрастает сравнительно с анаэробным процессом в 18 раз. В результате аэробные прокариоты, обладающие окислительным фосфорилированием, за сравнительно короткое время получили большие возможности для широкого освоения разнообразных условий среды. Они и составили группу организмов, из которых примерно 1,5–2 млрд. лет назад выделились эукариоты.

    3.3.2.Эволюция эукариот.

    Возникновение ядерных одноклеточных организмов ознаменовало собой принципиально новый этап в эволюции жизни.
    В течение длительного периода, не менее 700–800 млн. лет, эукариоты были представлены только одноклеточными формами. За это время возникли и развились многие –фундаментальные свойства эукариотических организмов. К их числу, безусловно, относится формирование митоза – одного из важных ароморфозов.
    Усложнение ядра, появление хромосом поставило насущную проблему – регулярного равного деления ядерных структур и цитоплазмы. Всякий, кому довелось наблюдать за делением эукариотических клеток с четким разделением сестринских хромосом, получает большое эстетическое удовольствие от его рациональности и красоты. В то же время благодаря симбиозу клетки эукариот обогатились митохондриями и хлоропластами. Выделилась группа простейших эукариот, из которых позднее сформировались растения, появились предковые формы животных, грибов. Симбиотический процесс следует также рассматривать, как крупный ароморфоз в развитии жизни на Земле. Непрерывно шел процесс дивиргенции, росло разнообразие форм жизни.
    Усложнение эукариотических клеток привело к возникновению полового процесса. Это значит, что в популяциях одноклеточных эукариот стали появляться клетки с полярными свойствами, способными к взаимному объединению – копуляции. В результате был проделан решающий шаг к возникновению диплоидности. По мере того как половой процесс становился регулярным, росла необходимость в делении клеток, в ходе которого гомологичные хромосомы расходятся и их число уменьшается вдвое. Именно эта важная функция первоначально легла на зарождающийся мейоз. Длительная эволюция в конечном счете привела к созданию двухступенчатого мейоза современного типа.
    Весь комплекс событий, начиная с формирования пола и заканчивая появлением мейоза, имел исключительное значение для последующего хода эволюции. В результате возникла диплоидность, появилась доминантность и рецессивность, сформировалась комбинативная изменчивость, слагающаяся из рекомбинации в профазе, случайного расхождения хромосом в метафазе I мейоза и случайного соединения гамет при оплодотворении. В популяциях одноклеточных эукариот благодаря становлению упомянутых процессов темп эволюции резко возрос. Таким образом, возникновение пола, мейоза и сопряженных явлений явилось крупнейшим достижением в эволюции жизни.

    Глава 4. Развитие высших структур.

    Никто точно не знает, когда именно возникла первая живая клетка. Возраст самых ранних следов жизни (остатков бактерий), найденных в древних отложениях земной коры, - около 3,5 млрд. лет. Допустим, что возраст жизни на нашей планете – 3,6 млрд. лет.
    Для большей наглядности представим себе, что этот огромный отрезок времени уместился в пределах одних суток. Сейчас на наших «часах» – ровно 24 ч, а в момент возникновения жизни они показывали 0 ч. Каждый час вместил 150 млн. лет, каждая минута – 2,5 млн. лет (рис. 2).

    4.1.Докембрий.

    Самая древняя эпоха развития жизни – докембрийская – длилась невероятно долго: свыше 3 млрд. лет. Или, по нашей шкале, с начала суток до 8 часов вечера.
    Мы уже рассказали об условиях, в которых жили первые живые организмы. Чтобы строить свои организмы, всему живому требуется, в частности, водород. Зеленые растения получают его, расщепляя воду и выделяя кислород. Но бактерии этого делать еще не умеют. Они разлагают не воду, а сероводород, что гораздо проще. При этом выделяется не кислород, а сера (поэтому на поверхности некоторых болот можно встретить пленку из серы).
    Так и поступали древние бактерии, но количество сероводорода на Земле было довольно ограничено. Наступил новый кризис в развитии жизни.

    Выход из него «нашли» сине-зеленые водоросли. Они научились расщеплять воду. Это в 7 раз труднее, чем расщепить сероводород. Это произошло 2,3 млрд. лет назад (по нашей шкале – около 9 часов утра).
    Теперь в качестве побочного продукта в атмосферу начал выделятся кислород. Накопление кислорода представляло серьезную угрозу для жизни. Начиная с 11 часов утра новое самозарождение жизни на Земле стало невозможным – содержание кислорода достигло 1% от современного. А перед живыми организмами встала новая проблема – как бороться с возрастающим количеством этого агрессивного вещества.
    Но эволюция смогла преодолеть и это испытание, одержав новую блестящую победу. Около 11 часов утра на Земле появился первый организм, вдохнувший кислород. Так возникло дыхание.
    До этого момента живые организмы жили в океане, укрываясь в водной толще от губительных для всего живого потоков солнечного ультрафиолета. Теперь благодаря кислороду в верхних слоях атмосферы возник слой озона, смягчивший излучение. Под защитой озона жизнь смогла выйти на сушу.
    В течение докембрия природа сделала еще целый ряд замечательных «изобретений». Около 2 часов дня (по нашей шкале) клетки получили ядро. Примерно тогда же возникло половое размножение, резко ускорившее темпы эволюции. Появились первые многоклеточные существа.
    К концу докембрия земные моря населяли разнообразные животные: медузы, плоские черви, губки, полипы. Все они были мягкотелыми, лишенными скелета. Возникновение у животных скелета – раковин, панцирей и т.д. – обозначило начало новой геологической эры.

    4.2.Палеозой.

    Палеозойская эра, начавшаяся 570 млн. лет назад, длилась 340 млн. лет (то есть по нашей шкале, с начала девятого вечера до половины одиннадцатого). Ученые делят ее на шесть периодов.

    4.2.1.Кембрий.

    Самый ранний из них – кембрий (он продолжался 70 млн. лет). В этот период у самых разнообразных животных начинает развиваться скелет, будь то раковина, панцирь или просто колючие шипики. Видимо, мягкотелость становится к этому моменту слишком небезопасной.Творчество природы, создающей новые формы жизни, в кембрии необычайно плодотворно и разнообразно: почти все типы животного царства получают своих первых представителей. Хордовых, например, представляют существа, похожие на современного ланцетника. Пропуская воду через жаберные щели, они таким образом процеживают из ила съедобные частички.
    Как ни трудно нам представить моря без рыб, но в морях кембрия их еще не было. Моря были густо заселены знаменитыми трилобитами – вымершими предками пауков, скорпионов и клещей.

    4.2.2.Ордовик.

    За кембрием следует ордовик (он длился 60 млн. лет). В море по-прежнему процветают трилобиты. Появляются первые позвоночные – родичи современных миног и миксин. Челюстей у них еще нет, но строение рта позволяет хватать живую добычу, что, конечно, гораздо выгоднее бесконечного процеживания ила.

    4.2.3.Силур.

    В следующем периоде – силуре (30 млн. лет) на сушу выходят первые растения (псилофиты), покрывая берега зеленым ковром высотой до 25 см. Вслед за ними на сушу начинают переселяться животные, приучаясь дышать атмосферным воздухом, - многоножки, черви, пауки и скорпионы.
    В морях трилобитов уже теснят гигантские ракоскорпионы, длина которых порой превышает 2 м. У позвоночных появляется новый, неизвестный прежде орган – челюсти, развившиеся из безобидных жаберных щелей бесчерепных (например, ланцетника). Чтобы добыча не ускользнула из этих челюстей, рыбы приобретают одновременно парные плавники, увеличивающие маневренность.

    4.2.4.Девон.

    Следующий период девон (60 млн. лет). Сушу заселяют плауны, папоротники, хвощи, мхи. В их зарослях уже живут первые насекомые.
    Выбираются на сушу и позвоночные. Климат в девоне был сухой, температура в течение года резко изменялась. Многие водоемы пересыхали. Некоторые рыбы стали на время засухи зарываться в ил. Для этого нужно было уметь дышать атмосферным воздухом. Но особенно многообещающей для дальнейшей эволюции оказалась группа кистеперых рыб. Помимо легочного дыхания они имели подвижные мускулистые плавники, похожие на лапы. С их помощью они ползали по дну. Чтобы не погибнуть в пересохшем водоеме, кистеперые рыбы отправлялись в сухопутные странствия в поисках воды. При этом они путешествовали на довольно большие расстояния. Естественно, выживали те, которые лучше могли двигаться по суше. Правда, слабых легких для дыхания было недостаточно. Как еще дышать, если жабры на суше не годятся? Только через кожу. Поэтому рыбья чешуя уступила место гладкой влажной коже.
    Так в девоне кистеперые рыбы постепенно покинули родную стихию и дали начало первым земноводным – стегоцефалам (панцирноголовым).

    4.2.5.Карбон.

    Вслед за девоном наступил карбон, или каменноугольный период (65 млн. лет). Впервые огромные пространства суши покрылись болотистыми лесами из древовидных папоротников, хвощей и плаунов.
    Глядя на современные небольшие плауны, трудно представить, что их предки (например, чешуедрев, или лепидодендрон) достигали 40 м в высоту и 6 м в обхвате.
    Из падавших в воду и постепенно превращавшихся в уголь стволов образовались залежи каменного угля. Самый ценный уголь (антрацит) получался из скоплений множества спор, которые роняли в воду деревья того времени.
    Впервые жизнь, освоившая воду и сушу, сделала шаг и в третью стихию – воздух. Первыми и единственными, кто поднялся в воздух в лесах каменноугольного периода, были насекомые. Порой они вырастали до невероятных размеров. Размах крыльев некоторых стрекоз достигал 70 см. А в зарослях помимо пауков и скорпионов стали встречаться, например, тараканы (размером иногда с морскую свинку).
    Жизнь сумела окончательно оторваться от породившей ее водной стихии. Почти одновременно это удалось рептилиям и семенным папоротникам, предкам хвойных. У растений появились семена вместо спор, у яиц рептилий – скорлупа. Зародыши в семени и яйце были защищены оболочками, обеспечены пищей. Из яиц рептилий вылуплялся уже не беспомощный головастик, а уменьшенная копия родителя.
    Рептилиям уже не нужна была голая кожа для дыхания – вполне хватало легких. Они «заковались обратно в панцирь» из чешуи и роговых щитков.

    4.2.6.Пермь.

    Последний период эры древней жизни – пермь, или пермский период (55 млн. лет). Климат стал холоднее и суше. Влажные леса из папоротников и плаунов исчезли. Вместо них появились и широко разрослись хвойные.
    Земноводных все больше теснили рептилии, шедшие к своему господству на планете.

    4.3.Мезозой.

    Мезозойская эра наступил 230 млн. лет назад и длилась 163 млн. лет то есть с полвины одиннадцатого вечера до половины двенадцатого по нашей шкале). Она делится на три периода: триас (35 млн. лет), юру, или юрский период (58 млн. лет), и мел, или меловой период (70 млн. лет).
    В морях еще в пермский период окончательно вымерли трилобиты. Но это не было закатом морских беспозвоночных. Напротив: на смену каждой вымершей форме приходило несколько новых. В течение мезозойской эры океаны Земли изобиловали моллюсками: белемнитами, похожими на кальмаров (их ископаемые раковины называют «чертовыми пальцами»), и аммонитами. Раковины некоторых аммонитов достигали 3 м в диаметре. Ни у кого больше на нашей планете, ни до того, ни позднее, не было таких колоссальных раковин!

    В лесах мезозоя господствовали хвойные, похожие на современные сосны и кипарисы, а также саговники. Мы привыкли видеть насекомых, вьющихся над цветами. Но такое зрелище стало возможным лишь с середины мезозоя, когда на Земле расцвел первый цветок. К меловому периоду цветковые растения уже начали теснить хвойные и саговники.
    Мезозой, особенно юру, можно назвать царством рептилий. Но еще в самом начале мезозоя, когда рептилии только шли к своему господству, рядом с ними появились мелкие, покрытые шерстью теплокровные животные – млекопитающие. Долгие 100 миллионов лет они жили рядом с динозаврами, почти незаметные н их фоне, терпеливо дожидаясь своего часа.
    В юре у динозавров появились и другие теплокровные соперники – первоптицы (археоптериксы). Они имели еще очень много общего с рептилиями: например, челюсти, усеянные острыми зубами. В меловом периоде от них произошли и настоящие птицы.
    В конце мелового периода климат на Земле стал холоднее. Природа уже не могла прокормить животных, весивших более десяти килограммов (правда, есть научные теории, иначе объясняющие вымирание динозавров). Началось массовое вымирание (растянувшееся, однако, на миллионы) гигантов-динозавров. Теперь освободившееся место могли занять звери и птицы.

    4.4.Кайнозой.

    Кайнозойская эра, начавшаяся «за полчаса до полуночи» (67 млн. лет назад), стала царством птиц, млекопитающих, насекомых и цветковых растений. Она продолжается и сейчас.
    Ученые разделяют ее на 3 периода: палеоген, неоген и антропоген. Последний из этих периодов, в котором появляется человек, начался около 2 млн. лет назад (по нашему счету – 50 секунд назад). А время существования всей человеческой цивилизации (если считать ее возрастом 10 тыс. лет) на нашей шкале – всего «четверть секунды».
    ссылка -http://www.erudition.ru/referat/printref/id.26675_1.html


    Источник: http://www.erudition.ru/referat/printref/id.26675_1.html
    Категория: Планета и царства природы | Добавил: Яковлев (30.07.2008)
    Просмотров: 762
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]