Информационный сайт ru-mo
ru-mo
Меню сайта

  • Категории каталога
    Болезни и симптомы [38]
    Лечение и реабилитация [23]
    Защита от болезней [24]
    Влияние внешней среды на организм [31]
    Психическое здоровье [23]
    Культура движения [30]
    Культура дыхания [13]
    Культура питания [16]
    Внутренняя среда организма [33]
    Жизнь клетки [12]
    Традиционные лекарственные растения России [12]
    Старение человека [5]

    Форма входа

    Поиск

    Друзья сайта


    Приветствую Вас, Гость · RSS 29.03.2024, 01:40

    Главная » Статьи » Культура здоровья » Внутренняя среда организма

    Почему пульсируют сосуды. / Ежелев А.В., кандидат. вет. наук.

    Почему пульсируют сосуды.

        Ежелев А.В., кандидат. вет. наук.

      При анаплазмозе иногда можно наблюдать интересное явление. У коров начинают пульсировать яремные (шейные) вены. Они очень крупные, и под тонким и гладким шерстным покровом их пульсация хорошо просматривается. Пульсация вен отмечена и у лошадей при кровопаразитарных заболеваниях, поражающих эритроциты. Возможно, такое встречается и при анаплазмозе овец, однако пульсацию трудно определить из-за густого шерстного покрова.
      Этому явлению сопутствуют клинические признаки, свидетельствующие о снижении интенсивности энергетического обмена. Животные угнетены, передвигаются с трудом, в основном лежат. Лихорадка перемежающего типа. Часто наблюдается поражение суставов. Молочная продуктивность резко падает, надой может снизиться за день в десять раз. Но самое интересное – это то, что венозная кровь приобретает алый цвет, характерный для артериальной. Это сразу заметно при взятии капли периферической крови для мазка. При этом улавливается зависимость между интенсивностью алого цвета и силой сокращения вен. Долгое время вразумительного объяснения этой загадке не находилось.
      Такие факторы как снижение энергетического обмена в тканях и в то же время поступление в венозное русло неизмененной артериальной крови наталкивает на мысль о том, что артериальная кровь обладает какого-то рода энергией, которая не отдается тканям в капиллярах, а проходит транзитом и заставляет пульсировать вены. Если это так, то напрашиваются два вопроса: какого рода эта энергия и как она воздействует на сосуды.
      Ответы на них помогла дать гипотеза о дыхании Г.Н.Петраковича [1]. Она основывается на том, что главным источником энергии в организме служат процессы неферментативного свободнорадикального окисления (СРО) ненасыщенных жирных кислот (НЖК), постоянно идущие в организме теплокровных животных. НЖК входят в состав клеточных мембран. В результате этой реакции выделяется много энергии в виде тепла и электронного возбуждения. При взаимодействии со свободными радикалами с внешней орбиты молекулы НЖК сбрасывается электрон, в результате чего она сама становится высоко активным свободным радикалом. Для запуска реакции требуется небольшая энергия, дальше реакция приобретает цепной характер и заканчивается при полном окислении субстрата. Роль ингибиторов могут выполнять сами продукты реакции.
      СРО НЖК – единственная реакция, при которой «рождаются» электроны, в остальных реакциях они или потребляются, или переносятся. Эти электроны и создают электрические потенциалы каждой клетки, которые затем сливаются в потенциалы органов и тканей.
      Для нормального функционирования организма нужен постоянный приток электронов к органам и тканям. В основе большинства заболеваний лежит процесс воспаления, который начинается с замедления тока крови. При этом происходит сброс отрицательного заряда эритроцитов, в результате чего повышается СОЭ. Затем в зоне воспаления накапливаются положительно заряженные частицы, начиная с протонов Н+ (снижение pH) и заканчивая положительно заряженными коллоидными частицами [2].
      Катализаторами СРО могут служить металлы с переменной валентностью, которые легко забирают и отдают электрон. При участии таких металлов цепная реакция приобретает еще и разветвленный характер. Следует также отметить, что в результате СРО НЖК образуется атомарный кислород, кетоновые тела (ацетон), альдегиды, спирты, в том числе этиловый спирт. В рамках СРО при омылении многоатомных спиртов образуются поверхностно активные вещества, в том числе сурфактант.
      Сурфактант - поверхностно активное вещество, антиателектатический фактор. Наименование происходит от английских слов surface active agent. Сурфактант располагается в виде защитного слоя на границе между воздухом и поверхностью альвеол.
      На воздухе реакция СРО НЖК превращается в обычное горение с выделением большого количества тепла, водяного пара и углекислого газа. Такое горение сурфактанта и происходит при дыхании. В легких функционируют в полном смысле «микродвигатели» внутреннего сгорания. Роль поршней выполняют эритроциты, которые идут в легочном капилляре «монетным столбиком». Горючей смесью служит пузырек воздуха, ограниченный пленочкой сурфактанта, который выпячивается в просвет капилляра через щель между альвеолоцитами при растяжении альвеолы и попадает между эритроцитами. Запальной искрой служат атомы железа, которые входят в состав гемоглобина и которые могут мгновенно сбросить электрон, сменив валентность с 2+ на 3+. Учитывая то, что гемоглобина в эритроците много, то искра получается довольно мощная. Сурфактантная пленка способствует протеканию этой искры.

      При попадании воздушно-сурфактантного пузырька между эритроцитами происходит компрессия и поджигание горючей смеси. В результате этого возникает вспышка, и в просвет альвеолы выбрасывается разогретый водяной пар с углекислым газом. Создавшееся давление проталкивает часть эритроцитов в сторону сердца и одновременно создает компрессию, вызывая следующую вспышку сурфактанта. При этом часть атмосферного воздуха засасывается в просвет капилляра.

      В результате вспышки образуется большое количество электронов, часть которых захватывается атомами железа, возвращая их в двухвалентное состояние. Другая часть электронов повышает заряд оболочки эритроцита. Одновременно с этим путем магнитной индукции инициируется реакция СРО в мембране самого эритроцита, в ходе которой под его оболочкой нарабатывается кислород. Кислород удерживается молекулами гемоглобина и меняет оптические свойства, окрашивая кровь в алый цвет.
      Количество наработки кислорода в мембране эритроцита ограничено, чем ограничивается и уровень СРО в ней. В регулировке уровня СРО также принимают участие атомы железа, захватывающие электроны, вот почему в гемоглобине железо всегда двухвалентное - Fe2+ . Остальные электроны заряжают поверхность эритроцитов, но заряд их не одинаков. За счет этого создается разность потенциалов, от которой зависит сила искры, проскакивающей между эритроцитами в момент их остановки по каким-либо причинам.
      Заряженные таким образом в легких эритроциты с кровью попадают в капилляры тканей. Капилляр имеет входной и выходной сфинктры (жомы). При вхождении эритроцитов монетным столбиком в капилляр жомы закрываются и эритроциты останавливаются. Между ними опять проскакивает искра, на этот раз уже в присутствии кислорода, накопленного под оболочкой эритроцита, происходит полное или частичное сгорание сурфактантной оболочки эритроцита. Сгорают также жировые пломбы в мембранах клеток. Поверхностное натяжение меняется, в результате чего эритроцит уменьшается в объеме, выдавливая из себя принесенные питательные вещества, которые при помощи натрия и подгоняемые теплом диффундируют в клетку.

      В этой реакции в качестве катализатора участвуют атомы железа, израсходовавшие свой заряд на искру и ставшие трехвалентными. СРО оболочки эритроцита идет до тех пор, пока атомы железа опять ни станут двухвалентными. За это время эритроциты успевают наработать новый сурфактант и принять первоначальную форму. Увеличившийся до своего полного объема (отношение объемов 1,7: 1) эритроцит становится "молекулярным насосом", втягивает в себя «клеточные отходы», находясь уже в венозной части капилляра. В этом процессе опять участвуют ионы натрия.

      Путем магнитной индукции в мембранах митохондрий клетки возбуждается СРО НЖК, в результате которого вырабатывается значительное количество энергии. Роль катализатора здесь играют атомы железа, входящие в состав цитохромов. В энергетических станциях клеток – митохондриях процессы биологического окисления завершаются образованием сверхвысокочастотного электромагнитного поля и ионизирующего протонного излучения [3]. За счет этого достигается синхронность и огромные скорости протекания энергетических процессов, происходящих в организме. Эти скорости никак нельзя объяснить с точки зрения господствующей в настоящее время химической теории, поскольку они в миллиарды раз превосходят скорость самых быстрых химических реакций.
      Активную часть цитохрома, также как гемоглобина образуют четыре атома железа, находящиеся на очень малом расстоянии между собой. Захваченный из субстрата электрон не сразу расходуется на реакцию, сначала он делает некоторое количество «перескоков» между этими атомами железа. Это хаотичное движение электронов в пределах сверхминиатюрного биологического «электромагнитика», образованного четырьмя атомами железа есть не что иное, как переменный электрический ток. Из-за малых расстояний между атомами железа он становится сверхкоротковолновым и сверхвысокочастотным.
      Сверхвысокочастоный электрический ток «электромагнитика» порождает такое же сверхвысокочастотное электромагнитное поле вокруг него. Но по законам физики эти точечные электромагнитные поля не могут существовать отдельно, они мгновенно сливаются между собой, синхронизируясь и образуя электромагнитное поле митохондрии. По тому же закону поля митохондрий сливаются между собой, образуя единое поле клетки или эритроцита, затем они сливаются в единое поле тканей (в том числе крови).
      Слияние электромагнитных полей эритроцитов формирует вокруг капилляра электромагнитное поле. Богатая железом кровь является как бы «железным сердечником». Между сверхвысокочастотным электромагнитным полем капилляра и «железным сердечником» возникает электродвижущая сила (ЭДС), направленная в сторону очередного слияния элекромагнитных полей, то есть из артериолы – в венулу. Эта ЭДС и перемещает кровь по венозным сосудам из тканей в направлении сердца. Силовые линии электромагнитного поля удерживают кровь в середине сосуда, устраняя турбулентность и увеличивая ее текучесть.
      По гипотезе Г.Н.Петраковича, кровь переносит из легких к тканям электронное возбуждение, а кислород вырабатывается в самих тканях в результате СРО НЖК. Не стоит полностью отказываться от процессов газообмена, однако следует признать, что гипотеза неферментативного окисления хорошо объясняет явления, остававшиеся до сих пор не совсем понятными: наличие в выдыхаемом воздухе большого количества водяного пара и углекислого газа, причину быстрого разогрева вдыхаемого воздуха при дыхании на морозе, способность растворения азота в крови, попадание кислорода из легких в кровь вопреки значительным барьерам, расположенным на этом пути.
      Почему мы не замерзаем, дыша на морозе, ведь площадь наших легких в десятки раз превышает площадь нашей кожи? Несмотря на это температура всех частей нашего тела, соприкасающихся с холодным воздухом, кровь и выдыхаемый воздух сохраняют стабильно высокую температуру.
      Откуда берется такое большое количество воды в выдыхаемом воздухе? Ведь если бы она испарялась из крови, то на стенках дыхательных путей осаждалось бы значительное количество солей. Однако этого не происходит, нет солей и в конденсате выдыхаемых газов. Вспышки в капиллярах легких создают кратковременные точечные зоны высоких температур (до 1000 градусов). В таких условиях азот может соединяться с кислородом, переходя в дальнейшем в другие соединения вплоть до белков. Кроме этого часть воздуха засасывается в просвет капилляра, при этом азот растворяется в крови. Благодаря этому не происходит воздушной эмболии при повреждении сосудов, однако наблюдается кессонная болезнь у водолазов при быстром поднятии с глубины. Кроме того, высокая температура стерилизует вдыхаемый воздух, убивая находящихся там микробов. Недаром паренхима легких не имеет нервных окончаний.
      В альвеолах количество углекислого газа увеличивается в 280 раз. Если бы весь этот газ приносился кровью, то ее кислотность была бы несовместима с жизнью. Между вдыхаемым воздухом в альвеоле и кровью в капилляре существует барьер из нескольких слоев клеток, который препятствует диффузии газов. Даже при растяжении альвеолы между разошедшимися клетками на границе воздуха и крови располагается пленка сурфактанта, которая тоже не способствует диффузии. А чтобы попасть в эритроцит кислороду нужно преодолеть еще и его оболочку.
      Таким образом, энергия крови заключена во внешнем и внутреннем электронном заряде эритроцитов, атомарном кислороде и сверхвысокочастотном электромагнитном поле, при чем, показатели этих факторов взаимосвязаны.
      Мы знаем, что переменное электромагнитное поле путем индукции может возбуждать в проводнике такой же электрический ток. Иллюстрацией могут служить обмотки трансформатора. Мышечные волокна можно принять за проводники, поскольку протекающие по ним электрические токи вызывают их сокращение. Опыт с лягушкой знают даже школьники. Поэтому сверхвысокочастотное электромагнитное поле, вокруг артерий должно приводить к сокращению ее стенок, вызывая напряжение сосуда.
      Сокращения сердца имеют свой собственный ритм, который задается его проводящей системой. При этом электромагнитные волны от сердца распространяются по всему организму, их давно используют в диагностических целях для снятия кардиограмм. Эти электромагнитные волны низкой частоты и модулируют то сверхвысокочастотное электромагнитное поле, которое существует вокруг сосудов. Поэтому мы наблюдаем не постоянное напряжение стенок артерий или их беспорядочное сокращение, а ритмичное в такт сердечному сокращение – пульс.
      Мышечная стенка вены отличается от мышечной стенки артерии только значительно меньшей толщиной. Поэтому, если по вене будет протекать артериальная кровь, вена тоже должна пульсировать, но слабее. Чем крупнее сосуд, тем сильнее будет виден пульс, поскольку мышечный слой более крупного сосуда толще.
      Интенсивность алого цвета крови говорит о напряженности электромагнитного поля, поскольку эти показатели взаимосвязаны. Анаплазмы каким-то способом ингибируют процесс запуска СРО в мембранах эритроцитов. Если принять во внимание, что анаплазмы располагаются в основном на периферии эритроцита в его внешней оболочке, можно предположить, что при сгорании этой оболочки погибнут и сами микроорганизмы.

      Поэтому ингибирование процесса СРО НЖК в эритроцитах жизненно важно для самих анаплазм, да и для других эритроцитарных паразитов. В результате этого оболочка эритроцита не сгорает и кислород не расходуется, эритроциты транзитом проходят из артерии в вену. Уровень энергетического обмена в тканях резко падает, что отражается на общем состоянии больного животного. Выдавливание питательных веществ из эритроцитов прекращается, что приводит к резкому падению молокоотдачи. При этом заболевании идет сильное разрушение эритроцитов, что в свою очередь также снижает уровень энергетического обмена.
      Принимая во внимание то, что эритроциты являются регуляторами энергетического обмена, характер лихорадки при анаплазмозе и пироплазмидозах вполне объясним. Резкий подъем температуры тела происходит в начале болезни. Затем организм не в состоянии поднять и удерживать температуру на достаточно высоком уровне. Температура «скачет», а порой даже опускается и держится ниже нормы.
      Объяснимо и поражение суставных поверхностей. Хрящевую ткань из-за ее повышенной плотности трудно снабжать питательными веществами за счет диффузии. Поэтому энергию она получает за счет электронного и протонного излучения. При низком уровне энергетического обмена в тканях, поступление энергии в хрящевую ткань резко снижается, что приводит к деградации и отмиранию хрящевых клеток. Это сопровождается развитием патологий суставов.
      Из всего вышесказанного можно сделать вывод, что сокращение стенок кровеносных сосудов происходит под воздействием энергии сверхвысокочастотного переменного электромагнитного поля, образующегося вокруг текущей по ним артериальной крови. Это поле в свою очередь является результатом протекающего в эритроцитах сверхвысокочастотного переменного электрического тока. Источником этой энергии служат процессы сгорания сурфактанта и неферментативного СРО НЖК мембран эритроцитов в легких при дыхании. Сверхвысокочастотное электромагнитное поле крови модулируется низкочастоными электромагнитными волнами, распространяющимися от сердца по всему телу. Поэтому мы видим синхронное сокращение стенок артерий в такт сердечному – пульс.
      Энергия транспортируется эритроцитами из легких в ткани, где расходуется на запуск таких же процессов СРО НЖК мембран митохондрий и получение энергии в виде электронного возбуждения и протонного излучения. Если этого сброса энергии эритроцитами не происходит, и они транзитом проходят венозное русло, то можно наблюдать пульсацию крупных вен, как, например, при заболевании анаплазмозом.

    Пульсация вен может наблюдаться и при других патологических состояниях, что должно сопровождаться окрашиванием венозной крови в алый цвет. Однако при некоторых видах отравлений алый цвет не обязательно свидетельствует о насыщенности крови кислородом, а совсем наоборот.

    Конечно, приведенная гипотеза описывает только общую схему энергетических процессов, связанных с дыханием. В организме могут быть задействованы и другие схемы, в сочетании с которыми вышеописанные процессы могут подвергаться регулировке и изменению в значительных пределах. Кроме того, некоторые из обозначенных здесь механизмов в реальности могут иметь несколько другой вид.

    Список литературы.

    1. Петракович Г.Н. Свободные радикалы против аксиом (новая гипотеза о дыхании). - Русская мысль, 1992, №2, с. 50-65.
    2. Самохоцкий А.С. О нервизме и лечебной проблеме его. - "Химия и жизнь", 1989, №11, с.75-85.
    3. Петракович Г.Н. Биополе без тайн. - Русская мысль, 1992, №2, с. 66-71.

    17.09.2004.

    Управляемая пульсация. Дополнение к статье «Почему пульсируют сосуды».

    А.В.Ежелев, кандидат ветеринарных наук, Калининградская НИВС

    Исходя из гипотезы о механизме пульсации сосудов, изложенной в предыдущей статье [1], сила пульсации прямо пропорциональна энергетической насыщенности крови, обусловленной электронным возбуждением эритроцитов. Чем выше насыщенность крови электронами, тем сильнее сокращаются сосуды, по которым она протекает. Для нормального функционирования тканей и поддержания их жизнедеятельности нужен постоянный приток электронов. При нарушении этого процесса развивается воспалительная реакция. Она начинается с расширения сосудов, в результате которого скорость кровотока замедляется, что приводит к сбросу эритроцитами своего заряда с выделением большого количества энергии. Это в свою очередь запускает последующие механизмы воспалительного процесса. В результате в воспалительном очаге накапливаются положительно заряженные частицы разного размера, начиная с протонов Н+ (снижение pH) и заканчивая положительно заряженными коллоидными частицами, а эритроциты теряют свой поверхностный заряд, что приводит к увеличению СОЭ [2, 3]. Следовательно, если восстановить нормальный приток электронов к воспаленному участку, воспалительный процесс можно повернуть вспять. Отсюда, к стати, проистекает противовоспалительный эффект некоторых соединений серы, которые служат донорами электронов. Об этом говорил Самохоцкий А.С. в своей статье и диссертации [4]. К группе таких соединений можно отнести и ДМСО.

    Человек способен мысленно влиять на процессы жизнедеятельности своего организма. К их числу можно отнести и воспалительный процесс, это хорошо иллюстрирует вековая практика австралийских аборигенов.

    Австралийские аборигены научились по своему желанию вызывать усиленную пульсацию сосудов в пораженных болезнью участках своего тела. Она проявляется в виде ощущения биения сердца в этих местах. Передавая туда целительную пульсацию, они многократно ускоряют наступление выздоровления и скорость восстановления тканей.

    С методикой «Звуки сердца» нас знакомит мастер нетрадиционных воздействий Юрий Борисов, на страницах газеты «Целебник» №1 за 2005 г. [5]
    Обучение этой методике происходит за 7-12 ежедневных самостоятельных занятий. Путем концентрации внимания сначала нужно научиться слышать биение своего сердца, затем вызывать ощущения звуков сердца поочередно в области правой ноги, левой ноги, правой руки, левой руки, таза, головы и грудины. После освоения этой методики человек способен вызывать ощущение звуков биения сердца в любом участке тела по своему желанию. Это позволяет не только быстрее справиться с болезнью, но и преодолеть стрессовые состояния.

    Этот опыт австралийских аборигенов наглядно показывает, что при овладении определенными навыками человек в состоянии произвольно перераспределять энергетические потоки в своем организме, источником которых является дыхание.

    Список литературы.

    1. Ежелев А.В. Почему пульсируют сосуды.
    2. Петракович Г.Н. Свободные радикалы против аксиом (новая гипотеза о дыхании). - Русская мысль, 1992, №2, с. 50-65.
    3. Самохоцкий А.С. О нервизме и лечебной проблеме его. - "Химия и жизнь", 1989, №11, с.75-85.
    4. Самохоцкий А.С. Опыт определения лечебных закономерностей. Диссертация, 1946.
    5. Борисов Ю. Звуки сердца. - «Целебник» №1, 2005.



    Источник: http://www.vetinpharm.com/articles/pulse.php
    Категория: Внутренняя среда организма | Добавил: Яковлев (11.06.2009)
    Просмотров: 1305
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]